вторник, 16 декабря 2025 г.

Дополнительные задания для 11 класса (информатика)

Рекурсия

1.  Обозначим частное от деления натурального числа a на натуральное число b как a div b, а остаток  — как a mod b. Например, 13 div 3  =  4, 13 mod 3  =  1.

Алгоритм вычисления значения функции F(n), где n  — целое неотрицательное число, задан следующими соотношениями:

F(0)  =  0;

F(n)  =  F(n div 10) + (n mod 10).

Укажите количество таких чисел n из интервала

765 432 015 ≤ n ≤ 1 542 613 239,

для которых F(n) > F(n + 1).

2.  Алгоритм вычисления значений функций F(n), где n  — натуральное число, задан следующими соотношениями:

F(1)  =  1;

F(2)  =  2;

F(3)  =  3;

F(n)  =  F(n − 3) · n при n > 3.

Чему равно значение функции F(11)? В ответе запишите только натуральное число.

Выигрышная стратегия

1.  Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня либо увеличить количество камней в куче в три раза. Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 43.

Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, состоящую из 43 или больше камней.

В начальный момент в куче было S камней; 1 ≤ S ≤ 42.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Укажите такое значение S, при котором Петя не может выиграть за один ход, но при любом ходе Пети Ваня может выиграть своим первым ходом.

2. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может:

        добавить в кучу один камень (действие А) или

        утроить количество камней в куче, а затем убрать из кучи 2 камня (действие Б).

Например, имея кучу из 20 камней, за один ход можно получить кучу из 21 камня или из 58 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится более 39. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, 2 ≤ S ≤ 39.

Говорят, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока  — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение S, когда такая ситуация возможна.

 

Комментариев нет:

Отправить комментарий